SORBONNE UNIVERSITÉ

Introduction to 3D Analysis With the 3D ImageJ Suite

Thomas Boudier,
Assoc. Prof., Sorbonne Université, Paris Visiting Scholar, Academia Sinica, Taipei

NEUBIAS Academy @Home

Why 3D ImageJ Suite

- Set of algorithms and tools for 3D Analysis
- Started in 2006, to analyse distances between gene loci in fluorescence images
- Gue et al., BMC Cancer 6 (2006)
- Need 3D data to get accurate measurements
- Need robust algorithms and tools for automation

What is 3D ImageJ Suite

- Set of algorithms and tools for 3D Analysis
- A core library "mcib3d-core"
- 3D Images and related processing
- 3D Objects and related analysis
- 3D Objects population and related analysis
- A set of plugins calling core algorithms, "mcib3dplugins"
- Processing, segmentation, analysis, utils
- Open-source
- https://github.com/mcib3d

Who developed 3D Suite

- Dr Cedric Messaoudi, first version
- Dr Jean Ollion, second version
- Me, supervision and maintenance
- Acknowledgment: Dr Philippe Andrey
- PhD Students : Cédric, Seb, Jean, Jaza, Hoa, Lamees, Afshin
- Extensive (but not complete) documentation
- https://imagej.net/3D_ImageJ_Suite

What difference in 3D

- 3D Image analysis :
- Anisotropy in Z
- More noise
- More complex shape in 3D
- More pixels/voxels to process
- Other sets for 3D analysis :
- BoneJ, MorphoLibJ, ICY, 3D Object Counter, ...

Pre-processing - filters

- Reduce noise in images

- For faster versions:
- JNI (CPU), CLIJ (GPU)
- 3D Filters : mean, median
- Enhance contrast of objects
- For spots : topHat
- 3D Filters :
- multi-threaded (CPU)
- Ellipsoid neighbourhood (anisotropy)
- Implemented in ImageJ in Filters menu

Pre-processing - edge symmetry

- Edge and symmetry filter
- Compute edges in X, Y and X
- Compute "magnitude" of edge
- Rays converging towards centres of objects
- A. Gertych et al., Computers in Biology and Medecine, 2015

Pre-processing - seeds

- Finding seeds is essential for segmentation
- 1 seed = 1 object
- 3D Local Maxima
- 3D Maxima Finder
- Similar to Find Maxima (but slower)

Pre-processing - seeds

- Finding seeds can be essential for segmentation
- 1 seed = 1 object
- 3D Local Maxima
- 3D Maxima Finder
- Similar to Find Maxima (but slower)

Thresholding - hysteresis

- Global 2D thresholding for 3D images
- Check "stack histogram"
- Check threshold for all slices
- Hysteresis 2 thresholds
- 3 areas: Background,
 undetermined, signal
- Undetermined connected to signal becomes signal
- Signal act as seed in objects
- Remove patches of noise

Thresholding - iterative

- Iterative: check all threshold and select best threshold for each object
- Shape criteria (most round, largest)
- Edge criteria
- Can separate touching objects
- Two separated objects have better criteria than
 the merged one
- Slow for 16-bits images

Thresholding - iterative

- Iterative: check all threshold and select best threshold for each object
- Shape criteria (most round, largest)
- Edge criteria

- Can separate touching objects
- Two separated objects have better criteria than the merged one
- Slow for 16-bits images

Thresholding - iterative

- Iterative: check all threshold and select best threshold for each object
- Shape criteria (most round, largest)
- Edge criteria
- Can separate touching objects
- Two separated objects have better criteria than the merged one
- Slow for 16-bits images

Segmentation - watershed

- Watershed
- Detect seeds then cluster voxels around by decreasing intensity
- Used in 2D ImageJ to separate objects
- Can separate 3D objects based on seeds
- Will do segmentation
- J. Visvader, WEHI

Segmentation - watershed

- Watershed
- Detect seeds then cluster voxels around by decreasing intensity
- Used in 2D ImageJ to separate objects
- Can separate 3D objects based on seeds
- Will do segmentation
- J. Visvader, WEHI

Segmentation - spots and nuclei

- Spots segmentation
- Find seeds : local maxima, maxima finder
- Local threshold around seeds
- Gaussian fitting
- Nuclei segmentation (culture cells)
- Z project, thresholding + 2D watershed separation
- 3D extension
- Tissue and more complex : ML and DL

Gilles et al., DiAna

- Weka, StarDist, CellPose, ...

Segmentation - spots and nuclei

- Spots segmentation
- Find seeds : local maxima, maxima finder
- Local threshold around seeds
- Gaussian fitting
- Nuclei segmentation (culture cells)
- Z project, thresholding + 2D watershed separation

- 3D extension
- Tissue and more complex
: ML and DL
- Weka, StarDist, CellPose, ...

Post-processing

- Process binary thresholded images
- Erode, dilate (min/max)
- Remove small regions
- opening
- Close small holes
- closing
- Make shapes compact by closing
- BinaryCloseLabels

Post-processing

- Process binary thresholded images
- Erode, dilate (min/max)
- Remove small regions
- opening
- Close small holes
- closing
- Make shapes compact by closing
- BinaryCloseLabels

3D Manager

- Manager for 3D objects (ROI)
- First Addlmage with a labelled image
- Load/save set of 3Drois
- Specific format .3droi (zip if multiple)
- 3D visualisation in stacks and 3DViewer
- Overlay in each slice (may take time to compute/update)
- Manual classification (press 0-5)
- Various measurements available
- Check 3DManager options
- Macro recordable + macros extensions (not detailed here)

3D Manager

1. 3D Rois list
2. Segmentation + add
3. Edit
4. Measurements
5. Visualisation
6. Load / Save
7. Options / About

21

3D Manager

- Visualisation

- Selected objects
- None = all
- Set of Rois displayed on current image/slice
- Contour, centre, sphere or BB
- Do not display inclusions

3D Manager

- Visualisation

- Selected objects
- None = all
- Set of Rois displayed on current image/slice
- Contour, centre, sphere or BB
- Do not display inclusions

3D Manager

- Visualisation

- Selected objects
- None = all
- Set of Rois displayed on current image/slice
- Contour, centre, sphere or BB
- Do not display inclusions

3D Manager

- Visualisation
- Visualisation based on measurement
- Volume, compactness, ...
- Using LUT colors
- 3D Viewer (+smooth mesh) or stack
- Available soon in macro

Analysis

- Measurements available

- Geometrical measurements of objects
- Shape measurements of objects
- Intensity measurements of objects
- Objects numbering
- Relationship between objects
- Co-localisation, distances
- Angle between 3 objects (centres)

Geometry

- Centroid

- Volume
- Nb of voxels (5 vox)
- Nb of "unit cubes" (10 um³)
- Surface
- Nb of border "faces" (22 vox)
- Nb of "unit faces" (36 um²)
- Corrected surface (14.7 vox)
- Surface area estimation of digitized 3D objects using weighted local configurations (Lindblad 2005)

$1 \times 1 \times 2$
u^{3}

Geometry

- Centroid
- Volume
- Nb of voxels (5 vox)
- Nb of "unit cubes" (10 um³)
- Surface
- Nb of border "faces" (22 vox)
- Nb of "unit faces" (36 um²)
- Corrected surface (14.7 vox)
- Feret (3.6 um)
- Distances to Center (um)

$$
1 \times 1 \times 2
$$

- Min (0.89), max (1.84), mean (1.36), SD (0.44)

Shape

- Compactness and sphericity

- Ratio between volume and surface
- In voxels or units

$$
C=\frac{36 \cdot \pi \cdot V^{2}}{A^{3}} ; S=C^{1 / 3}
$$

- Maximal compaction for sphere (1)
- Compactness discrete
- An easy measure of compactness for 2D and 3D shapes, Bribiesca 2008

$$
C_{\mathrm{d}}=\frac{n-A / 6}{n-(\sqrt[3]{n})^{2}} .
$$

Shape

- Ellipsoid fitting

- Best fitting ellipsoid

$$
s x x=\sum \frac{\left(x-C_{x}\right)^{2}}{\text { Volume }} ; \text { syy }=\sum \frac{\left(y-C_{y}\right)^{2}}{\text { Volume }} ; s z z=\sum \frac{\left(z-C_{z}\right)^{2}}{\text { Volume }}
$$

$$
s x y=\sum \frac{\left(x-C_{x}\right)\left(y-C_{y}\right)}{\text { Volume }}
$$

$$
s x z=\sum \frac{\left(x-C_{x}\right)\left(z-C_{z}\right)}{\text { Volume }}
$$

$$
s y z=\sum \frac{\left(y-C_{y}\right)\left(z-C_{z}\right)}{\text { Volume }}
$$

- Radii $=\sqrt{(5 . e i g e n)}$
- Elongation = R1/R2
- Flatness = R2/R3
- Ratio V_ell / V_object

NEUBIAS Academy
T. Boudier - 3D ImageJSuite

Shape

- Convex Hull

- Minimal enclosing convex shape
- Binary to mesh
- Convex hull
- Mesh to binary
- Ratio V_Hull / V_obj
- https://imagej.nih.gov/ij/plugins/3d-convex-hull/index.html

Shape

- 3D Moments

- Based on ellipsoid computation
- J1 = sxx + syy + szz
- J2 = ...
- Used for more accurate shape description
- GulMohammed 2014, BMC Bioinformatics

Intensity

- At Centre
- Mean, Min, Max, SD
- Mode
- Most abundant value
- Most abundant value > 0
- Integrated density
- Sum of all pixel values
- List all values

Numbering

- Number of labels inside an object - Volume occupied by labels

Numbering

- Number of labels inside an object - Volume occupied by labels

Distances

- Centre
- Border
- Hausdorff (plugin)
- Radial distance
- Closest

Gilles et al., DiAna

Distances

- Centre
- Border
- Hausdorff (plugin)
- Radial distance
- Closest

By Rocchini - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=2918812

Colocalisation

- Coloc (nb voxels)
- Percentage coloc
- Relative to objects volumes
- Plugin multiColoc
- Surface contact

Gilles et al. DiAna, an ImageJ Tool for Object-Based 3D Co-Localization and Distance Analysis, 2017

Colocalisation

- Coloc (nb voxels)
- Percentage coloc
- Relative to objects volumes
- Plugin multiColoc
- Surface contact

Gilles et al. DiAna, an ImageJ Tool for Object-Based 3D Co-Localization and Distance Analysis, 2017

Gilles et al., DiAna

Analysis

- Other analysis available in 3D ImageJ Suite
- EVF
- Interactions (Voronoi)
- Spatial Statistics

EDT - EVF

J. Groom, WEHI

- EDT :
 Euclidean
 Distance Map

- EVF :
 Eroded
 Volume Fraction

NEUBIAS Academy
T. Boudier - 3D ImageJSuite

EDT - EVF

Values are calibrated distances from closest border

Values are normalised between 0 and 1, from closest to furthest

EDT - EVF

Compute number and volume of spots within layers (0-0.01, ..)

Compute volume inside 100 layers (0-0.01, ...) ,

Interactions

- Compute zones around objects :
- Watershed / Voronoi
- Within fixed radius
- Dam lines will separate zones
- Compute touching
- Dam lines, touching, or dilate

Spatial statistics

Spatial organization

Clusters :

A lot of small distances between spots $\rightarrow G$ above curve of random organisation

A lot of «voids» in the structure, large distances between reference points and spots
$\rightarrow F$ below curve of random organisation

Uniform :

A lot of large similar distances between spots
\rightarrow G below curve of random organisation
No « voids » in the structure, small distances between reference points and spots $\rightarrow F$ above curve of random organisation

Spatial organization

- Statistical comparison
- original measurements
- measurements from modelled data
- Different models
- Random
- Shuffled data

DATA organisation

- Projects / Datasets
- Raw data
- Filtered data
- Segmented data
- Analysed data
- Results
- On Disk or DB (OMERO)

Protocol

TAPAS

https://imagej.net/TAPAS

TAPAS

- A protocol is a list of modules
- A module is defined by
- Name of the module
- process:filter
- The parameters
- radiusxy:4
- On which datasets to apply the protocol
- Either on disk or OMERO
// read data
process:input
// filter
process:filters
radxy:4
radz: 2
filter:median
// threshold
process:autoThreshold method: Otsu
// label
process:label
minVolume:100
// output
process:output
name: ?name?-seg

TAPAS

- A protocol is a list of modules
- A module is defined by
- Name of the module
- process:filter
- The parameters
- radiusxy:4
- On which datasets to apply the protocol
- Either on disk or OMERO

$$
\begin{aligned}
& \text { // analyse } \\
& \text { process:measurement } \\
& \text { dir:?ij? } \\
& \text { file:?name?-results.csv } \\
& \text { list:volume, centroid }
\end{aligned}
$$

```
// attach
process:attach
dir:?ij?
file:?name?-results.csv
```

// delete
process: delete
dir:?ij?
file:?name?-results.csv

TAPAS

L. Chen, IMB, AS

NEUBIAS Academy

TAPAS

TAPAS

TAPAS

https://imagej.net/TAPAS

TAPAS

$\stackrel{U}{0}$ 0 0 0 0 0

https://imagej.net/TAPAS

General protocol

- Channels / Structures
- One channel \rightarrow one or many structures
- One Structure \rightarrow one or many channels
- Filter/Segment structures
- Geometry/Shape of structures
- Intensity of channels within structures
- Analysis between structures
- Distances, ...

Summary

- 3D ImageJ Suite:
- Set of tools for 3D Analysis
- 3D Manager main graphical interface
- Set of macros Extension (not detailed here)
- TAPAS
- Framework for automation
- Agnostic of where is the data and who is processing

What next ?

- Q/A in Image.sc Forum
- Data and protocols available
- ImageJ 3D Suite
- Better Roi handling in 3D Manager
- New plugin 1-1 Association (tracking)
- TAPAS
- New modules CLIJ and DeepLearning
- NEUBIAS webinar?

