
Introduction to 3D Analysis With the 3D ImageJ Suite

Thomas Boudier, Assoc. Prof., Sorbonne Université, Paris Visiting Scholar, Academia Sinica, Taipei

NEUBIAS Academy @Home

Why 3D ImageJ Suite

- Set of algorithms and tools for 3D Analysis
- Started in 2006, to analyse distances between gene loci in fluorescence images
 - Gue et al., BMC Cancer 6 (2006)
- Need 3D data to get accurate measurements
- Need robust algorithms and tools for automation

NEUBIAS Academy

What is 3D ImageJ Suite

- Set of algorithms and tools for 3D Analysis
- A core library "mcib3d-core"
 - 3D Images and related processing
 - 3D Objects and related analysis
 - 3D Objects population and related analysis
- A set of plugins calling core algorithms, "mcib3dplugins"
 - Processing, segmentation, analysis, utils

Open-source

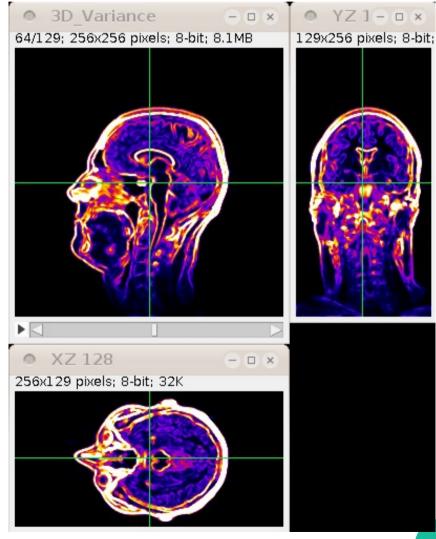
- https://github.com/mcib3d

Who developed 3D Suite

- Dr Cedric Messaoudi, first version
- Dr Jean Ollion, second version
- Me, supervision and maintenance
- Acknowledgment : Dr Philippe Andrey
- PhD Students : Cédric, Seb, Jean, Jaza, Hoa, Lamees, Afshin
- Extensive (but not complete) documentation
 - https://imagej.net/3D_ImageJ_Suite

What difference in 3D

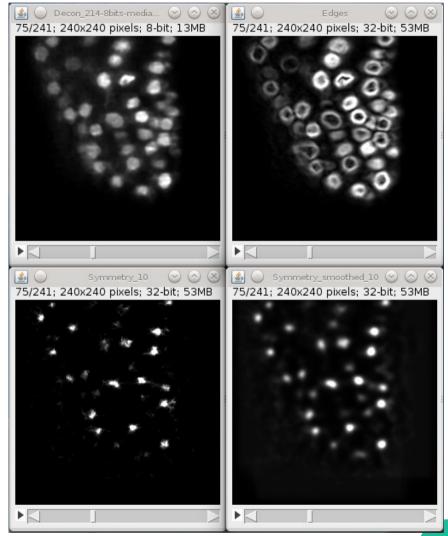
3D Image analysis :


- Anisotropy in Z
- More noise
- More complex shape in 3D
- More pixels/voxels to process

Other sets for 3D analysis :

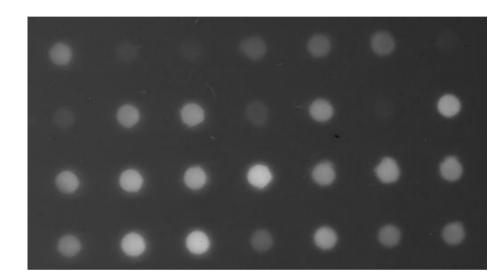
- BoneJ, MorphoLibJ, ICY, 3D Object Counter, ...

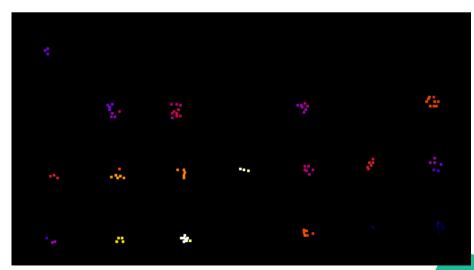
Pre-processing - filters


- Reduce noise in images
 - 3D Filters : mean, median
- Enhance contrast of objects
 - For spots : topHat
- 3D Filters :
 - multi-threaded (CPU)
 - Ellipsoid neighbourhood (anisotropy)
 - Implemented in ImageJ in Filters menu
- For faster versions :
 - JNI (CPU), CLIJ (GPU)

NEUBIAS Academy T. Boudier - 3D ImageJSuite

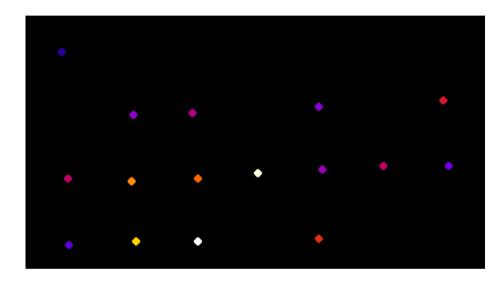
Pre-processing - edge symmetry

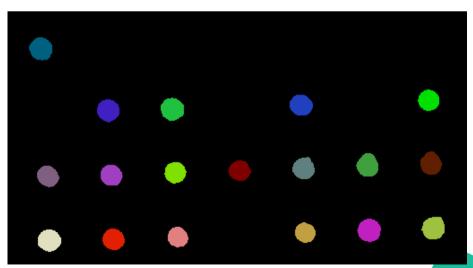

- Edge and symmetry filter
 - Compute edges in X, Y and X
 - Compute "magnitude" of edge
 - Rays converging towards centres of objects
- A. Gertych *et al.,* Computers in Biology and Medecine, 2015



NEUBIAS Academy T. Boudier - 3D ImageJSuite

Pre-processing - seeds

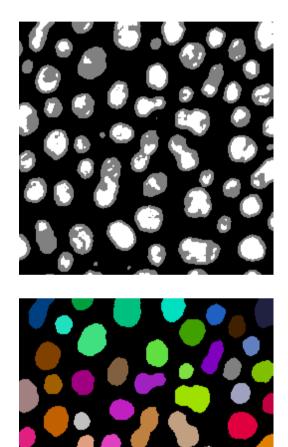

- Finding seeds is essential for segmentation
 - 1 seed = 1 object
- 3D Local Maxima
- 3D Maxima Finder
 - Similar to *Find Maxima* (but slower)



Pre-processing - seeds

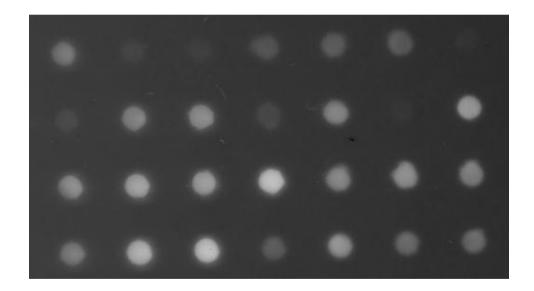
- Finding seeds can be essential for segmentation
 - 1 seed = 1 object
- 3D Local Maxima
- 3D Maxima Finder
 - Similar to *Find Maxima* (but slower)

NEUBIAS Academy

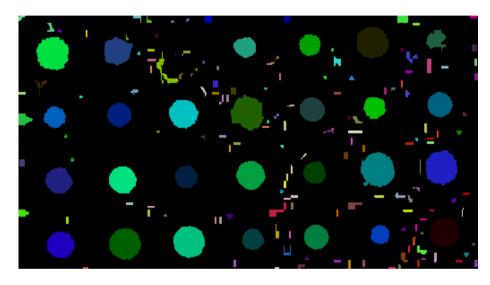

Thresholding - hysteresis

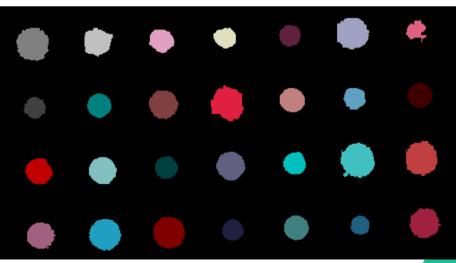
Global 2D thresholding for 3D images

- Check "stack histogram"
- Check threshold for all slices

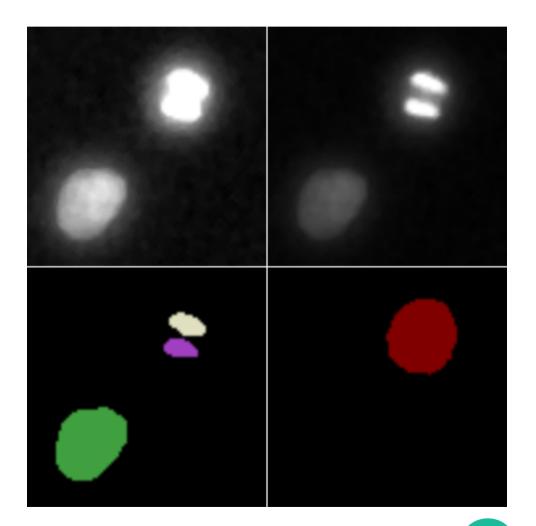

Hysteresis 2 thresholds

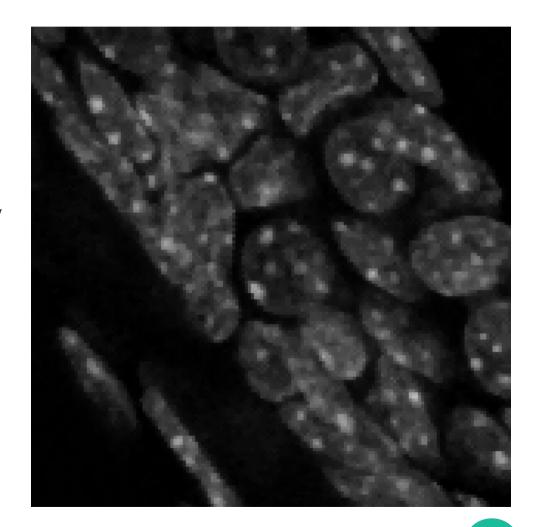
- 3 areas : Background, undetermined, signal
- Undetermined connected to signal becomes signal
- Signal act as seed in objects
- Remove patches of noise


Thresholding - iterative

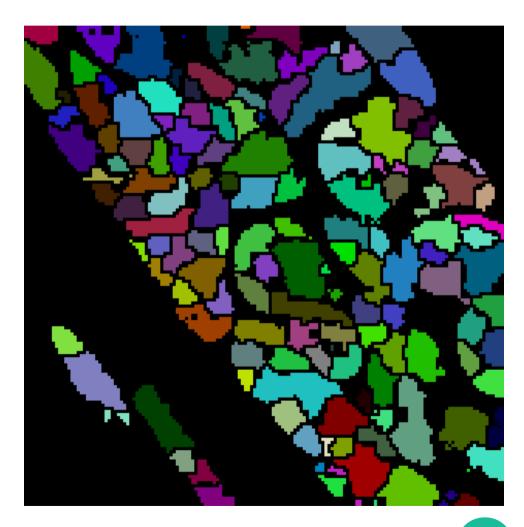

- Iterative : check all threshold and select best threshold for each object
 - Shape criteria (most round, largest)
 - Edge criteria
- Can separate touching objects
 - Two separated objects have better criteria than the merged one
- Slow for 16-bits images

Thresholding - iterative


- Iterative : check all threshold and select best threshold for each object
 - Shape criteria (most round, largest)
 - Edge criteria
- Can separate touching objects
 - Two separated objects have better criteria than the merged one
- Slow for 16-bits images

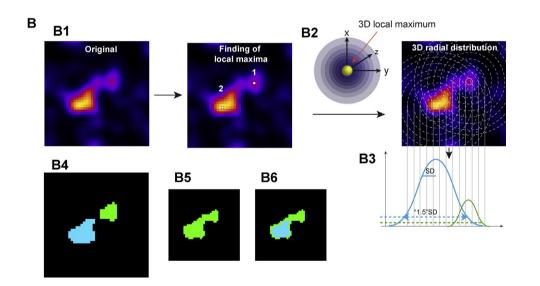

Thresholding - iterative

- Iterative : check all threshold and select best threshold for each object
 - Shape criteria (most round, largest)
 - Edge criteria
- Can separate touching objects
 - Two separated objects have better criteria than the merged one
- Slow for 16-bits images


Segmentation - watershed

- Watershed
- Detect seeds then cluster voxels around by decreasing intensity
 - Used in 2D ImageJ to separate objects
 - Can separate 3D objects based on seeds
 - Will do segmentation
- J. Visvader, WEHI

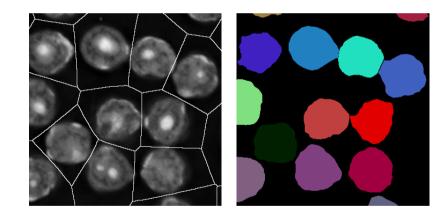
Segmentation - watershed


- Watershed
- Detect seeds then cluster voxels around by decreasing intensity
 - Used in 2D ImageJ to separate objects
 - Can separate 3D objects based on seeds
 - Will do segmentation
- J. Visvader, WEHI

Segmentation - spots and nuclei

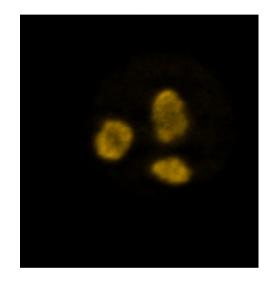
Spots segmentation

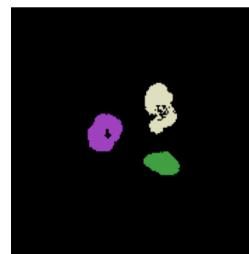
- Find seeds : local maxima, maxima finder
- Local threshold around seeds
 - Gaussian fitting
- Nuclei segmentation (culture cells)
 - Z project, thresholding + 2D watershed separation
 - 3D extension
- Tissue and more complex
 - : ML and DL
 - Weka, StarDist, CellPose, ...



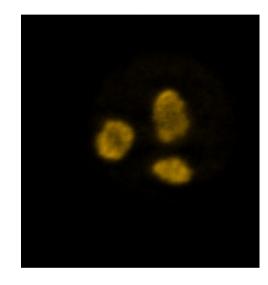
Gilles et al., DiAna

Segmentation - spots and nuclei


Spots segmentation


- Find seeds : local maxima, maxima finder
- Local threshold around seeds
 - Gaussian fitting
- Nuclei segmentation (culture cells)
 - Z project, thresholding + 2D watershed separation
 - 3D extension
- Tissue and more complex
 - : ML and DL
 - Weka, StarDist, CellPose, ...

Post-processing


- Process binary thresholded images
 - Erode, dilate (min/max)
- Remove small regions
 - opening
- Close small holes
 - closing
- Make shapes compact by closing
 - BinaryCloseLabels

Post-processing

- Process binary thresholded images
 - Erode, dilate (min/max)
- Remove small regions
 - opening
- Close small holes
 - closing
- Make shapes compact by closing
 - BinaryCloseLabels

Manager for 3D objects (ROI)

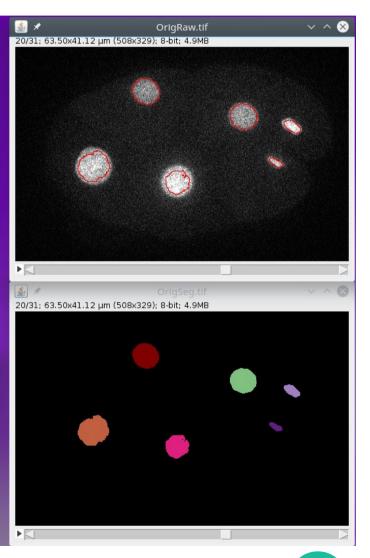
- First AddImage with a labelled image

Load/save set of 3Drois

- Specific format .3droi (zip if multiple)

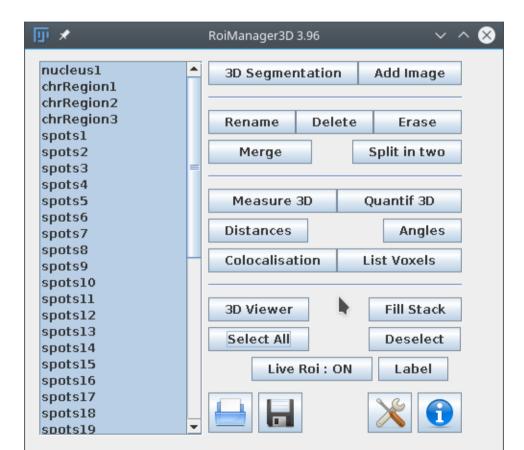
3D visualisation in stacks and 3DViewer

- Overlay in each slice (may take time to compute/update)
- Manual classification (press 0-5)

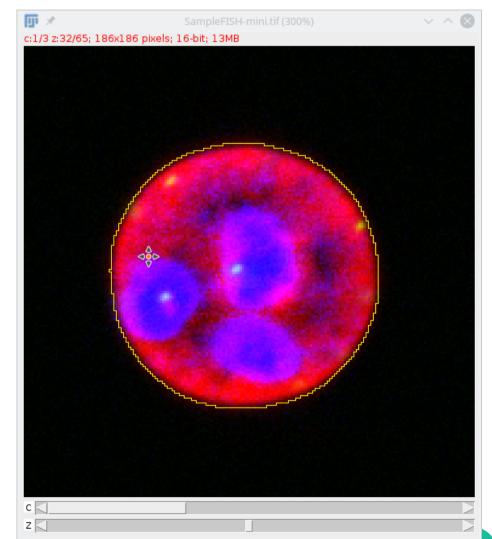

Various measurements available

- Check 3DManager options

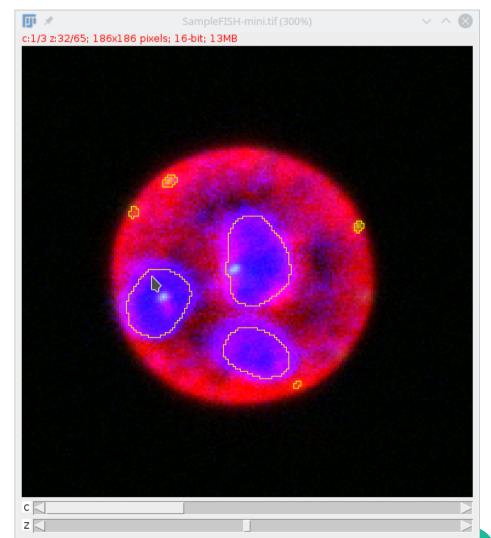
Macro recordable + macros extensions (not detailed here)

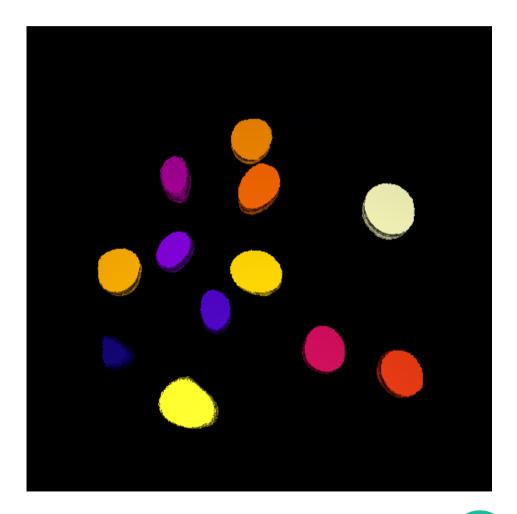

- 1. 3D Rois list
- 2. Segmentation + add
- 3. Edit
- 4. Measurements
- 5. Visualisation
- 6. Load / Save
- 7. Options / About

<u>ب</u>		oiManager:			· 🐷
obj1-val26 obj2-val51	1	3D Sec	gmentati	Add Ima	ige
obj3-val77	<u> </u>	Renam	ne Delet	te Eras	
obj4-val102 obj5-val128		Renain			<u> </u>
obj5-val128 obj6-val154		Mer	rge	Split in t	wo
obj6-val154 obj7-val179					
obj8-val205					
obj9-val230		Measu	ure 3D	Quantif (BD
		Distan	ces (4	. A	ngles
		Coloca	lisation	List Voxe	els
		3D Viev	wer	Fills	Stack
		Select		. Des	elect
			Live Roi : C	N Labe	el
		6		7	
<u>.</u> *		3D Me	asure	7	
Menu		3D Me	easure	7	• • • •
Menu CX (unit) (CY (unit)	CZ (unit)	√ol (unit)	Vol (pix)	Comp (p 1
Menu CX (unit) (16.852	31.797	CZ (unit) \ 8.739	√ol (unit) 5.551	1015	0.165
Menu CX (unit) (16.852 27.7	31.797 25.119	CZ (unit) \ 8.739 2.099	√ol (unit) 5.551 29.745	1015 5439	0.165 0.025
Menu CX (unit) 16.852 27.7 40.944	31.797 25.119 13.642	CZ (unit) \ 8.739 2.099 2.28	Vol (unit) 5.551 29.745 44.373	1015 5439 8114	0.165 0.025 0.055
Menu CX (unit) (16.852 27.7 40.944 49.67	31.797 25.119 13.642 21.855	CZ (unit) 8.739 2.099 2.28 5.933	Vol (unit) 5.551 29.745 44.373 7.345	1015 5439 8114 1343	0.165 0.025 0.055 0.119
Menu CX (unit) (16.852 27.7 40.944 49.67 24.731	31.797 25.119 13.642 21.855 8.493	CZ (unit) 8.739 2.099 2.28 5.933 6.064	Vol (unit) 5.551 29.745 44.373 7.345 44.116	1015 5439 8114 1343 8067	0.165 0.025 0.055 0.119 0.101
Menu CX (unit) (16.852 27.7 40.944 49.67	31.797 25.119 13.642 21.855	CZ (unit) 8.739 2.099 2.28 5.933	Vol (unit) 5.551 29.745 44.373 7.345	1015 5439 8114 1343	0.165 0.025 0.055 0.119
Menu CX (unit) (16.852 27.7 40.944 49.67 24.731 43.327	31.797 25.119 13.642 21.855 8.493 13.253	CZ (unit) 8.739 2.099 2.28 5.933 6.064 6.831	Vol (unit) 5.551 29.745 44.373 7.345 44.116 31.374	1015 5439 8114 1343 8067 5737	0.165 0.025 0.055 0.119 0.101 0.093
Menu CX (unit) (16.852 27.7 40.944 49.67 24.731 43.327 52.635	31.797 25.119 13.642 21.855 8.493 13.253 15.176	CZ (unit) 8.739 2.099 2.28 5.933 6.064 6.831 6.563	Vol (unit) 5.551 29.745 44.373 7.345 44.116 31.374 5.862	1015 5439 8114 1343 8067 5737 1072	0.165 0.025 0.055 0.119 0.101 0.093 0.129
Menu CX (unit) (16.852 27.7 40.944 49.67 24.731 43.327 52.635 14.719	31.797 25.119 13.642 21.855 8.493 13.253 15.176 22.867	CZ (unit) 8.739 2.099 2.28 5.933 6.064 6.831 6.563 6.436	Vol (unit) 5.551 29.745 44.373 7.345 44.116 31.374 5.862 51.488	1015 5439 8114 1343 8067 5737 1072 9415	0.165 0.025 0.055 0.119 0.101 0.093 0.129 0.088



NEUBIAS Academy


- Selected objects
 - None = all
- Set of Rois displayed on current image/slice
- Contour, centre, sphere or BB
- Do not display inclusions


- Selected objects
 - None = all
- Set of Rois displayed on current image/slice
- Contour, centre, sphere or BB
- Do not display inclusions

- Selected objects
 - None = all
- Set of Rois displayed on current image/slice
- Contour, centre, sphere or BB
- Do not display inclusions

- Visualisation based on measurement
- Volume,
 compactness, ...
- Using LUT colors
- 3D Viewer (+smooth mesh) or stack
- Available soon in macro

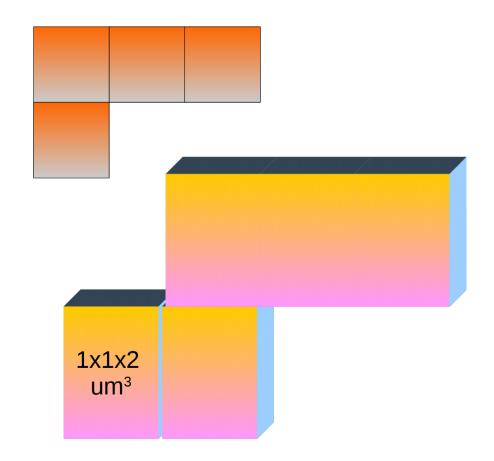
Analysis

•

Measurements available

- Geometrical measurements of objects
- Shape measurements of objects
- Intensity measurements of objects
- · Objects numbering
- · Relationship between objects
 - Co-localisation, distances
- · Angle between 3 objects (centres)

Geometry


Centroid

• Volume

- Nb of voxels (5 vox)
- Nb of "unit cubes" (10 um³)

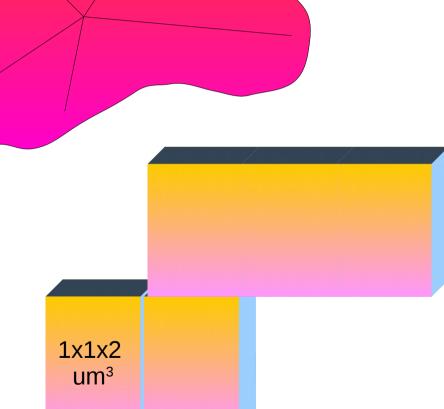
Surface

- Nb of border "faces" (22 vox)
- Nb of "unit faces" (36 um²)
- Corrected surface (14.7 vox)
- Surface area estimation of digitized 3D objects using weighted local configurations (Lindblad 2005)

Geometry

Centroid

• Volume

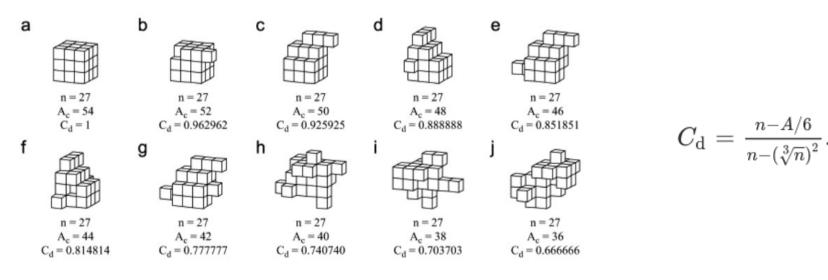

- Nb of voxels (5 vox)
- Nb of "unit cubes" (10 um³)

• Surface

- Nb of border "faces" (22 vox)
- Nb of "unit faces" (36 um²)
- Corrected surface (14.7 vox)
- Feret (3.6 um)

Distances to Center (um)

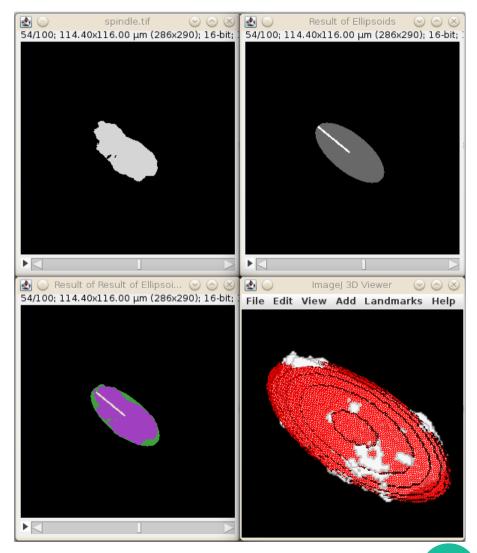
Min (0.89), max (1.84), mean (1.36), SD (0.44)


Compactness and sphericity

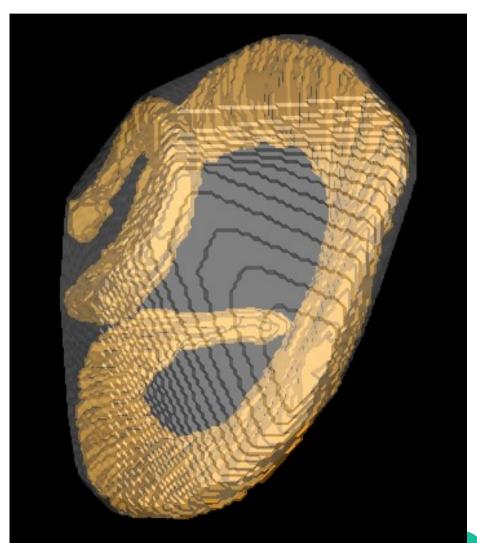
- Ratio between volume and surface
 - In voxels or units

NEUBIAS Academy

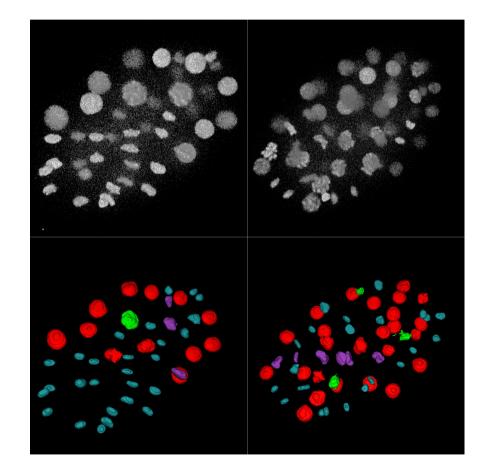
- Maximal compaction for sphere (1)
- Compactness discrete
 - An easy measure of compactness for 2D and 3D shapes, Bribiesca 2008


T. Boudier - 3D ImageJSuite

 $C = \frac{36. \pi . V^2}{\Delta^3}; S = C^{1/3}$


Ellipsoid fitting

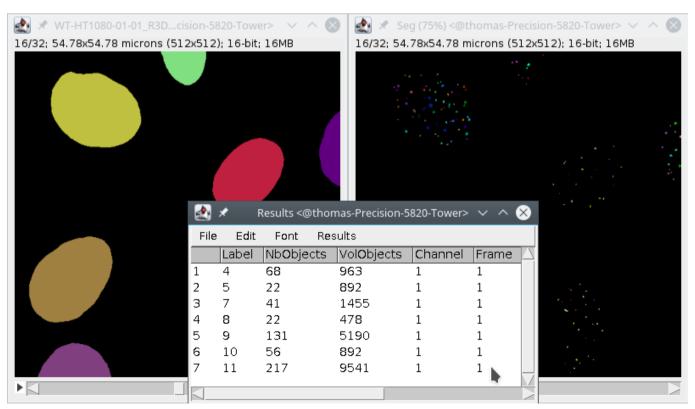
- Best fitting ellipsoid $sxx = \sum \frac{(x-C_x)^2}{Volume}; syy = \sum \frac{(y-C_y)^2}{Volume}; szz = \sum \frac{(z-C_z)^2}{Volume}$ $sxy = \sum \frac{(x-C_x)(y-C_y)}{Volume}$ $sxz = \sum \frac{(x-C_x)(z-C_z)}{Volume}$ $syz = \sum \frac{(y-C_y)(z-C_z)}{Volume}$
- Radii = $\sqrt{(5.eigen)}$
- Elongation = R1/R2
- Flatness = R2/R3
- Ratio V_ell / V_object


• Convex Hull

- Minimal enclosing convex shape
- Binary to mesh
- Convex hull
- Mesh to binary
- Ratio V_Hull / V_obj
- https://imagej.nih.gov/ij/plugins/3dconvex-hull/index.html

3D Moments

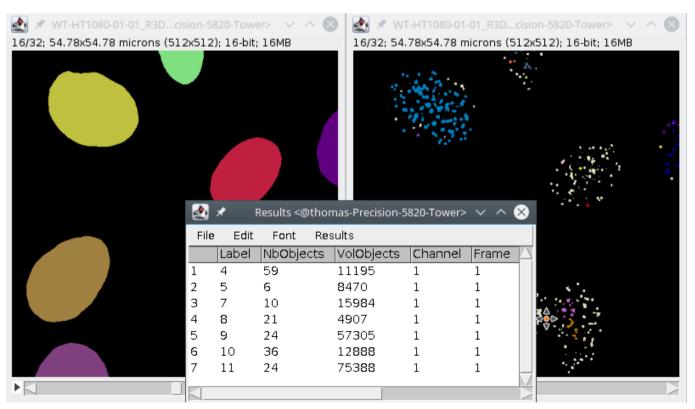
- Based on ellipsoid computation
- -J1 = sxx + syy + szz
- J2 = ...
- Used for more accurate shape description
 - GulMohammed 2014, BMC Bioinformatics



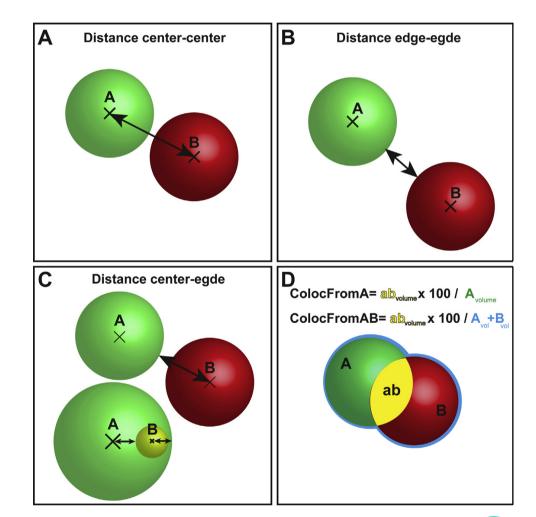
Intensity

- At Centre
- Mean, Min, Max, SD
- Mode
 - Most abundant value
 - Most abundant value > 0
- Integrated density
 - Sum of all pixel values
- List all values

Numbering


- Number of labels inside an object
- Volume occupied by labels

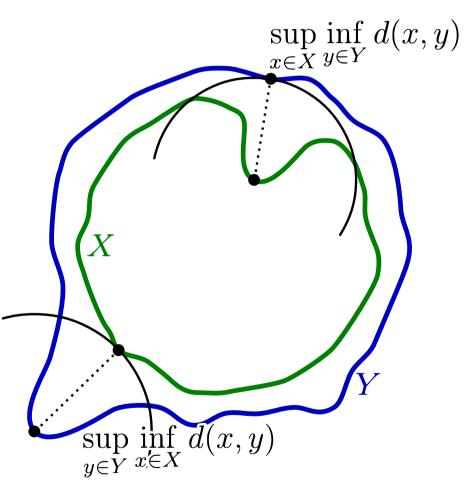
NEUBIAS Academy T. Bouc


Numbering

- Number of labels inside an object
- Volume occupied by labels

Distances

- Centre
- Border
- Hausdorff (plugin)
- Radial distance
- Closest

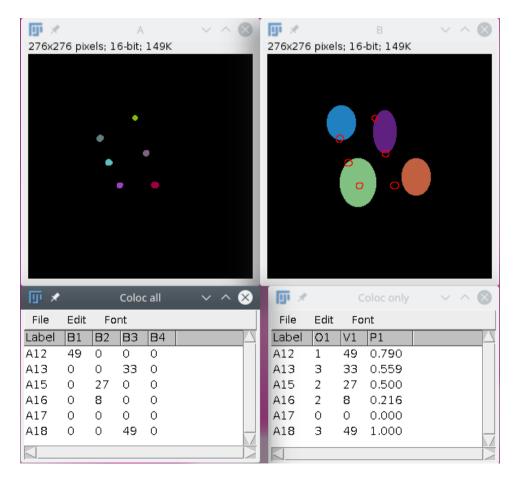


Gilles et al., DiAna

NEUBIAS Academy

Distances

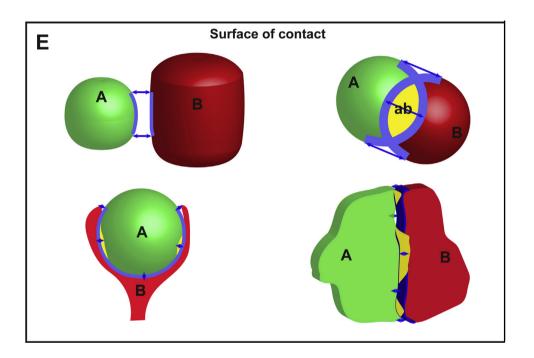
- Centre
- Border
- Hausdorff (plugin)
- Radial distance
- Closest



By Rocchini - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=2918812

Colocalisation

- Coloc (nb voxels)
- Percentage coloc
 - Relative to objects volumes
- Plugin multiColoc
- Surface contact


Gilles et al. DiAna, an ImageJ Tool for Object-Based 3D Co-Localization and Distance Analysis, 2017

Colocalisation

- Coloc (nb voxels)
- Percentage coloc
 - Relative to objects volumes
- Plugin multiColoc
- Surface contact

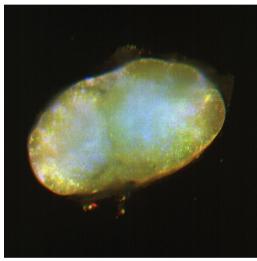
Gilles et al. DiAna, an ImageJ Tool for Object-Based 3D Co-Localization and Distance Analysis, 2017

Gilles et al., DiAna

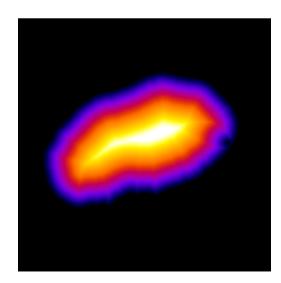
Analysis

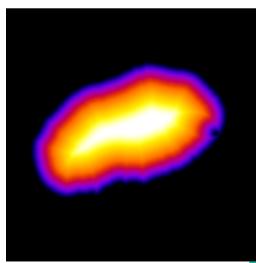
- Other analysis available in 3D ImageJ Suite
 - EVF

. . .


- Interactions (Voronoi)
- Spatial Statistics

EDT - EVF


• EDT : Euclidean Distance Map


• EVF : Eroded Volume Fraction

J. Groom, WEHI

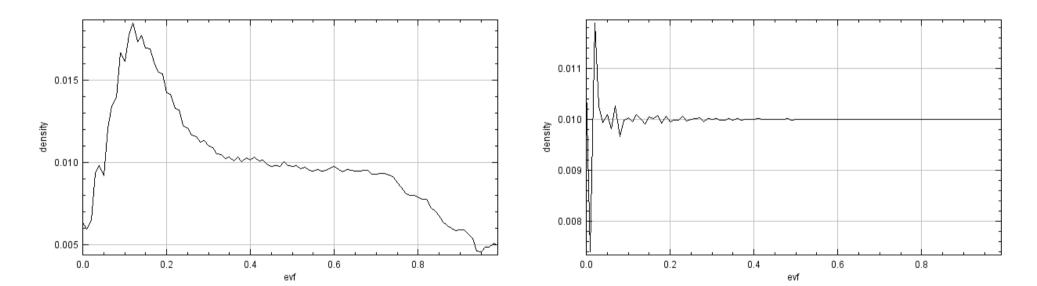
EDT - EVF

Values are calibrated distances from closest border

▲ EDT ∨ ∧ ⊗ 31/65; 272x272 pixels; 32-bit; 18MB	🛃 🖈 3D Quantif						~ ^ 😣	
	Menu							
	Nb	Obj	Туре	Label	AtCenter	Min	Мах	Mean 🔺
	6	8	0	spots7	0	0	0	0
	18	20	0	spots19	1.414	0	5.831	1.701
	30	32		spots31	2	0	5.477	1.916
	29	31		spots30	1.414	0	5	2.026
A CONTRACTOR OF	1	3		spots2	2.236	0	4.472	2.171
	5	7		spots6	2.236	0	4.472	2.186
• •	27	29		spots28	2.449	0	5.196	2.229
	28	30		spots29	2.236	0	4.899	2.245
	4	6 21		spots5 spots20	2	0	4.472 6.782	2.258 2.26
	19	16		spots20	2.828	0	6.325	2.26
	33	35		spots15	2.020		0.325	2.401
	32	34		spots33	2.449	0	4.899	2.43
	25	27		spots26	2.449	0	5.196	2.448
	23	4		spots20	2.236	0	4.472	2.519
	21	23		spots22	2.828	0	5.385	2.53
	31	33		spots32	2.236	Ő	5.385	2.819
🔬 🗶 EVF 🗸 🔿 🚫	23	25		spots24	2.449	0	5.831	2.822
31/65; 272x272 pixels; 32-bit; 18MB	22	24		spots23	3.162	0	5.385	2.841
	11	13	0	spots12	3	0	5.477	2.846
	10	12	0	spots11	3	1	5	2.907
	15	17	0	spots16	3	1	5.477	3.081
	8	10		spots9	3		5	3.153
	7	9		spots8	3	1	6	3.217
	17	19		spots18	3	0	7	3.326
	9	11		spots10	4	1	6.325	3.376
	16	18		spots17	3.742	1	6.782	3.553
	12	14		spots13	3.742	1.414	5.477	3.576
	3	5		spots4	3.742	0	7.874	3.62
	0	2		spots1	3.606	0	8	3.639
	24	26 15		spots25 spots14	3.606	1	6.708 7.071	3.971 4.415
	20	22		spots14 spots21	4 12.649	2	14.036	4.415
	20	22		spots21 spots27	12.649	12.649	14.036	14.219
	20	20	0	spor527	15	12.049	15	14.219

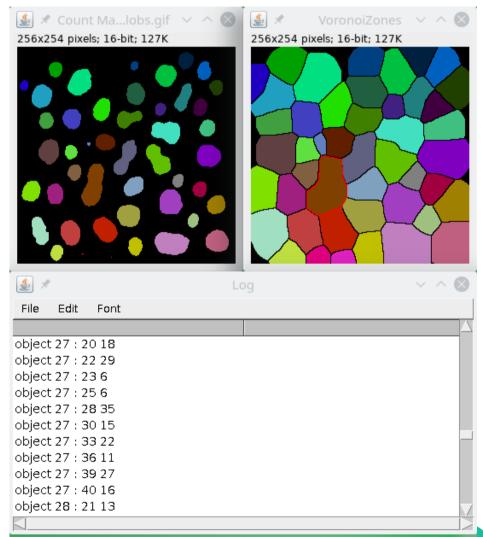
Values are normalised between 0 and 1, from closest to furthest

▲ EDT ∨ ^ ⊗	🔬 🖈 3D Quantif							\sim \sim \otimes
31/65; 272x272 pixels; 32-bit; 18MB	Menu							
	Nb	Obj	Туре	Label	AtCenter	Min	Мах	Mean 🔺
	6		0	spots7	0	0	0	0
	18			spots19	0.12	0	0.547	0.154
	30			spots31	0.178	0	0.532	0.177
	29			spots30	0.12		0.479	0.185
	1			spots2	0.22		0.437	0.196
	5			spots6	0.22		0.437	0.199
	27			spots28	0.239		0.514	0.205
				spots29	0.22		0.457	0.207
	4			spots5 spots20	0.178	0	0.437	0.208
	19			spots20 spots15	0.178	0	0.63	0.209
	33			spots15	0.254	0	0.604	0.218
	32			spots33	0.239	0	0.473	0.227
	25			spots26	0.239	0	0.437	0.228
	21			spots22	0.254	0	0.523	0.234
	2			spots3	0.22		0.437	0.234
	31			spots32	0.22		0.523	0.266
🛃 🖈 EVF 🗸 ^ 🚫	11	13		spots12	0.287	0	0.532	0.267
31/65; 272x272 pixels; 32-bit; 18MB	23	25	0	spots24	0.239	0	0.547	0.267
	10	12	0	spots11	0.287	0.052	0.479	0.268
	22			spots23	0.32		0.523	0.271
	8			spots9	0.287	0.052	0.479	0.293
	15			spots16	0.287		0.532	0.295
	7			spots8	0.287	0.052	0.569	0.3
	17			spots18	0.287		0.648	0.314
	9			spots10	0.383		0.604	0.319
	3			spots4	0.359		0.709	0.34
	16			spots17	0.359	0.052	0.63	0.34
• •	0			spotsl	0.347		0.724	0.341
	12			spots13 spots25	0.359	0.12	0.532	0.347
	13			spots25 spots14	0.347		0.625	0.382
	20			spots14 spots21	0.383		0.667	0.423
	20			spots21 spots27	0.962	0.962	0.994	0.908
	20	20	0	3p01327	0.999	0.502	0.599	0.59
			100 C					

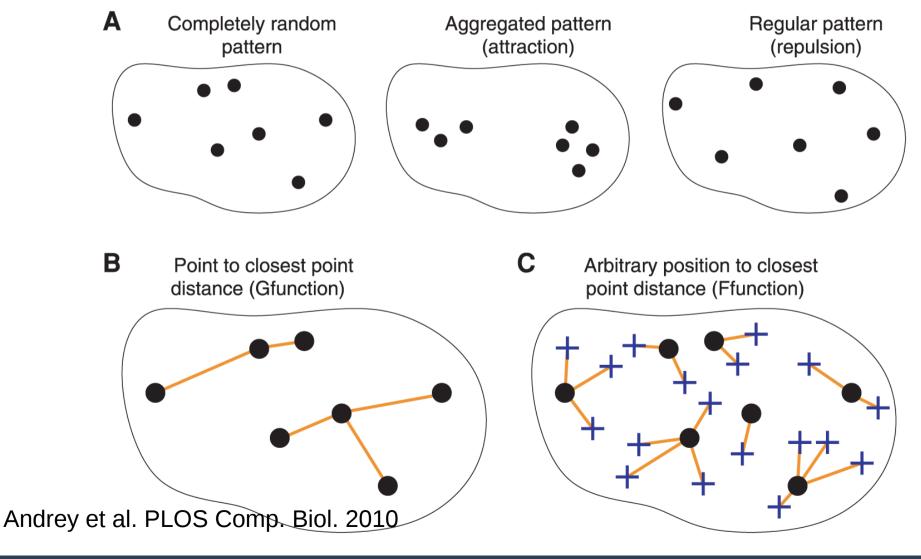

NEUBIAS Academy

EDT - EVF

NEUBIAS Academy


Compute number and volume of spots within layers (0-0.01, ..)

Compute volume inside 100 layers (0-0.01, ...) ,



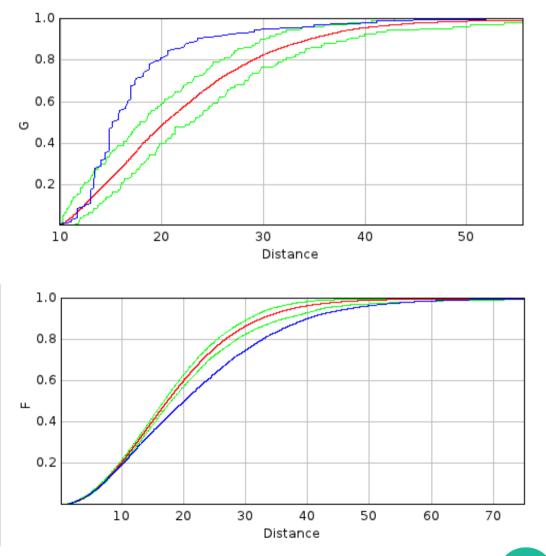
Interactions

- Compute zones around objects :
 - Watershed / Voronoi
 - Within fixed radius
- Dam lines will separate zones
- Compute touching
 - Dam lines, touching, or dilate

Spatial statistics

Spatial organization

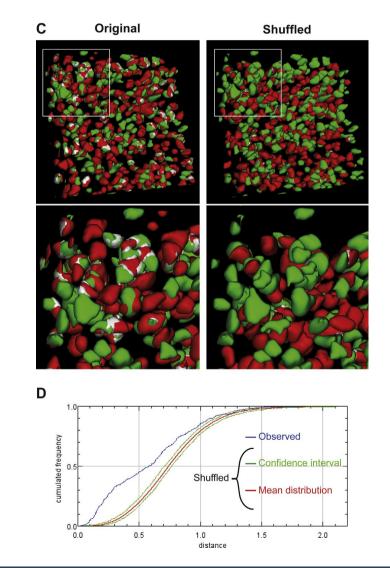
Clusters :


A lot of small distances between spots \rightarrow G above curve of random organisation

A lot of « voids » in the structure, large distances between reference points and spots → F below curve of random organisation

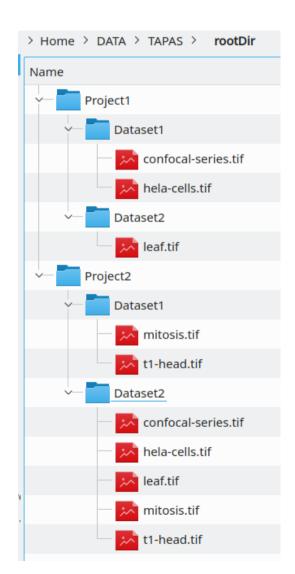
A lot of large similar distances between spots \rightarrow G below curve of random organisation

No « voids » in the structure, small distances between reference points and spots \rightarrow F above curve of random organisation

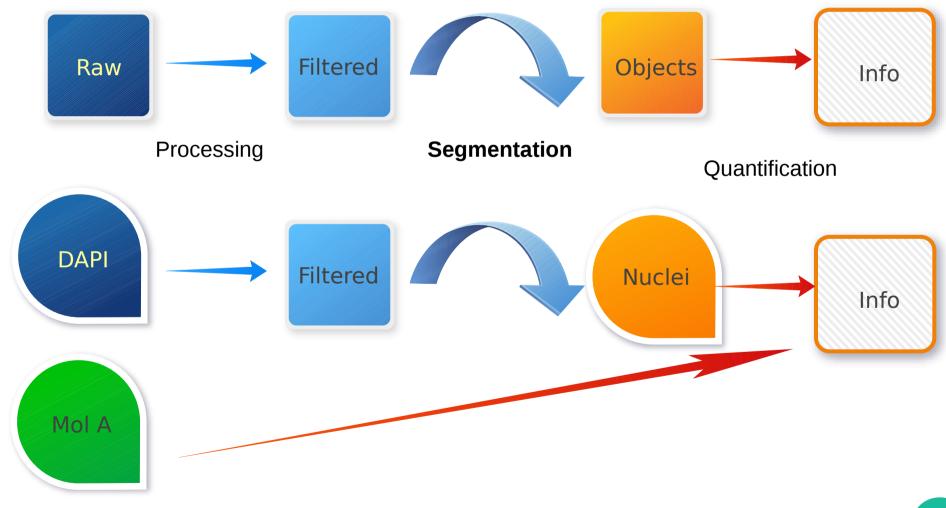

NEUBIAS Academy T. Bou

Spatial organization

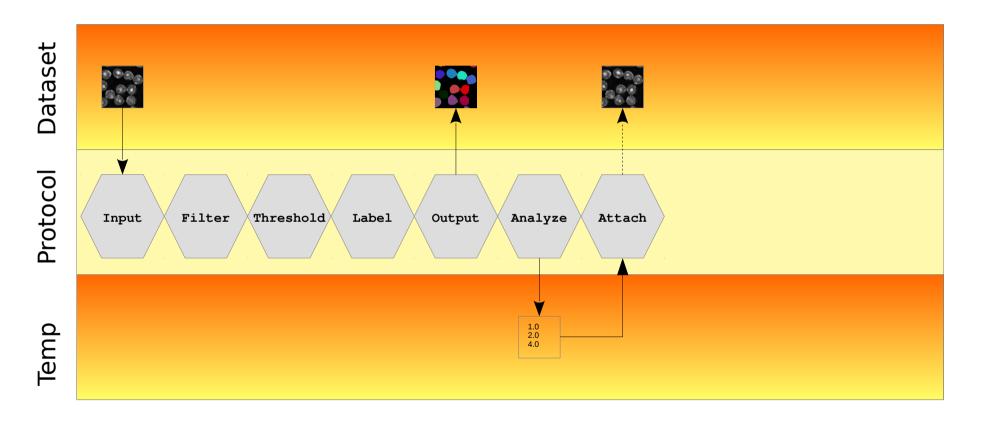
- Statistical comparison
 - original measurements
 - measurements
 from modelled data


Different models

- Random
- Shuffled data



DATA organisation


- Projects / Datasets
 - Raw data
 - Filtered data
 - Segmented data
 - Analysed data
 - Results
- On Disk or DB
 (OMERO)

Protocol

https://imagej.net/TAPAS

TAPAS

- A protocol is a list of modules
- A module is defined by
 - Name of the module
 - process:filter
 - The parameters
 - radiusxy:4

On which datasets to apply the protocol

- Either on disk or OMERO

// read data
process:input

// filter
process:filters
radxy:4
radz:2
filter:median

// threshold
process:autoThreshold
method:Otsu

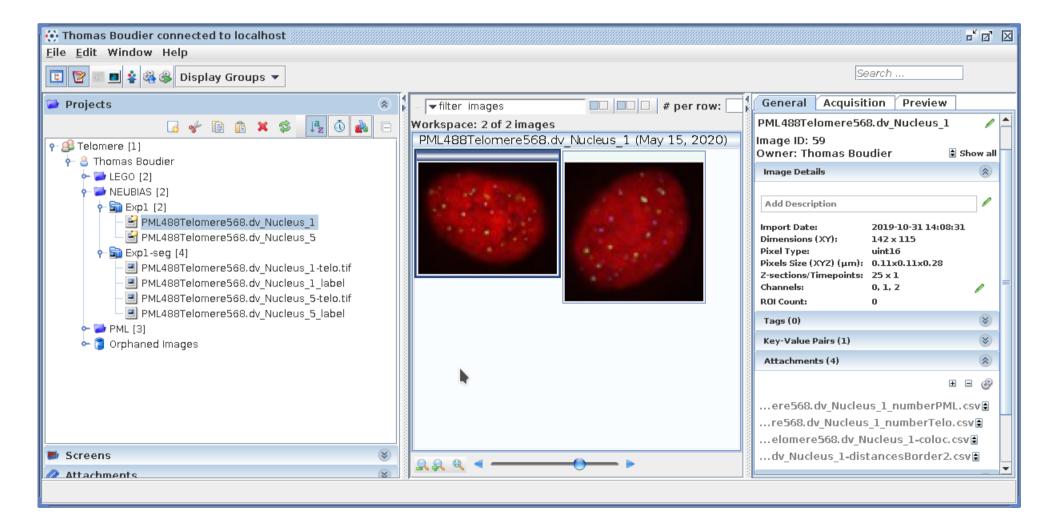
// label
process:label
minVolume:100

// output
process:output
name:?name?-seg

TAPAS

- A protocol is a list of modules
- A module is defined by
 - Name of the module
 - process:filter
 - The parameters
 - radiusxy:4

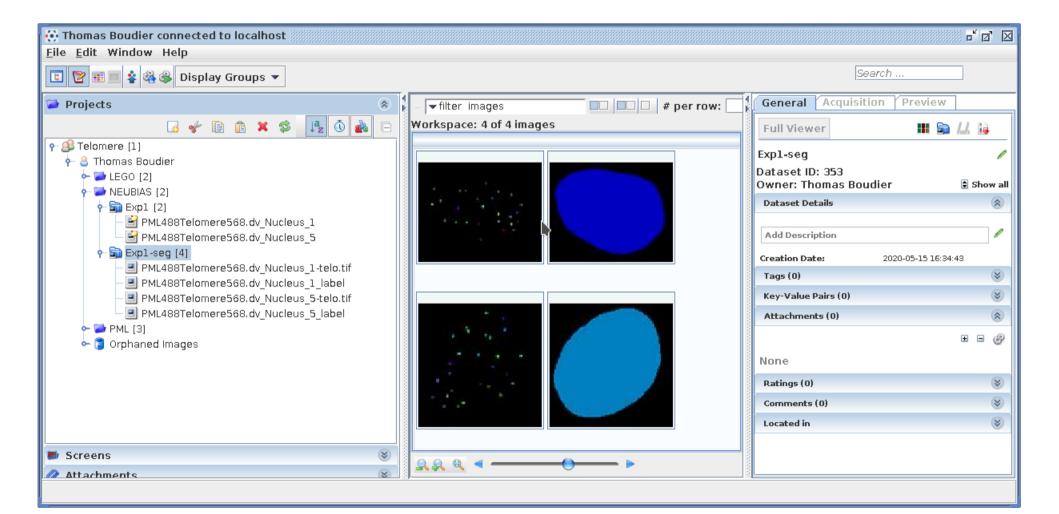
On which datasets to apply the protocol


- Either on disk or OMERO

// analyse
process:measurement
dir:?ij?
file:?name?-results.csv
list:volume, centroid

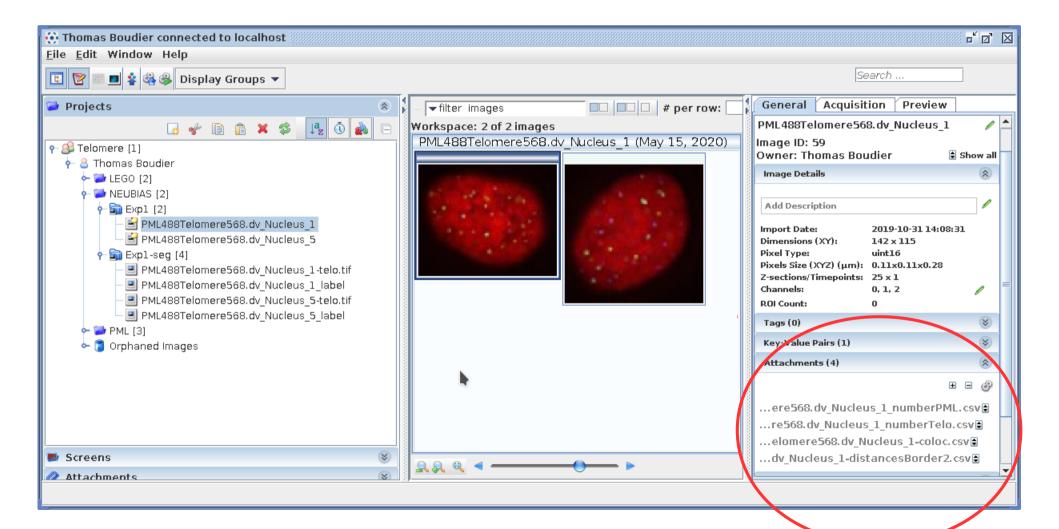
// attach
process:attach
dir:?ij?
file:?name?-results.csv

// delete
process:delete
dir:?ij?
file:?name?-results.csv

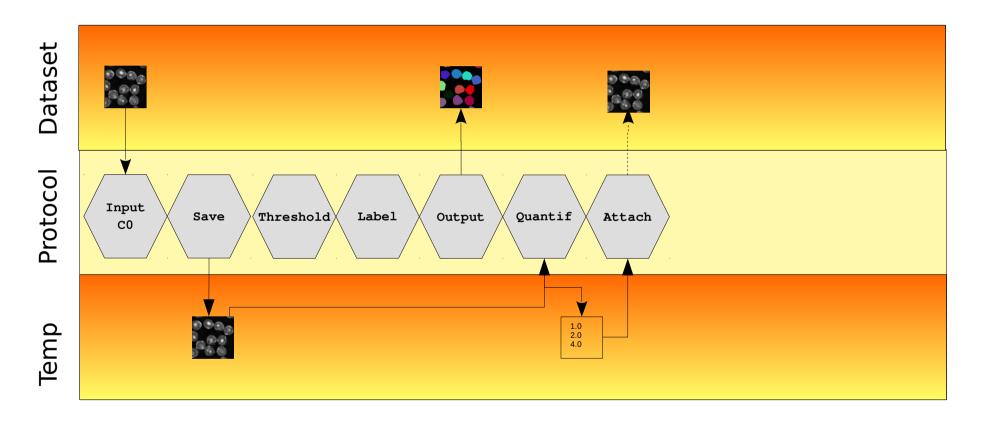


L. Chen, IMB, AS

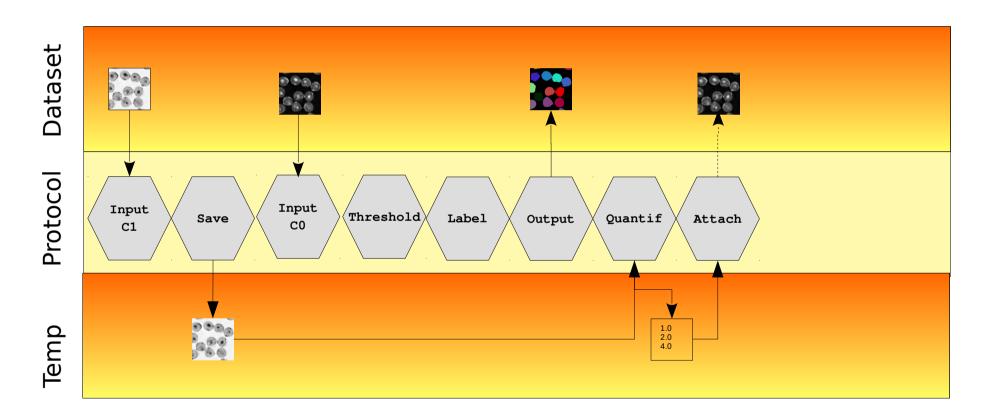
NEUBIAS Academy



NEUBIAS Academy



NEUBIAS Academy



https://imagej.net/TAPAS

https://imagej.net/TAPAS

General protocol

Channels / Structures

- One channel \rightarrow one or many structures
- One Structure \rightarrow one or many channels
- Filter/Segment structures
- Geometry/Shape of structures
- Intensity of channels within structures
- Analysis between structures
 - Distances, ...

Summary

• 3D ImageJ Suite :

- Set of tools for 3D Analysis
- 3D Manager main graphical interface
- Set of macros Extension (not detailed here)

• TAPAS

- Framework for automation
- Agnostic of *where* is the data and *who* is processing

What next ?

Q/A in Image.sc Forum

- Data and protocols available

ImageJ 3D Suite

- Better Roi handling in 3D Manager
- New plugin 1-1 Association (tracking)

• TAPAS

- New modules CLIJ and DeepLearning
- NEUBIAS webinar ?